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Figure 1: Pictures of participant interaction and the flowchart of our field study containing three parts: (1) an initial interview
and demo, (2) three weeks of app usage, and (3) an exit interview. The yellow circle in the first picture marks the smartwatch
with the SoundWatch app installed.

ABSTRACT
While recent advances have enabled mobile sound recognition tools
for deaf and hard of hearing (DHH) people, these tools have only
been studied in the lab or through short, controlled experiments.
To assess the real-world feasibility and guide the future designs
of mobile sound awareness systems, we conducted a three-week
field study of SoundWatch, a smartwatch-based sound recognition
app, with 10 DHH participants. Our findings suggest the app’s
utility in increasing environmental awareness and facilitating ev-
eryday tasks for DHH users. However, several challenges, such as
background noises, variability of real-world sounds, and confusion
among similar sounding sounds, indicated that mobile sound recog-
nition solutions are “not there yet” for adoption and use in daily
life. We close by presenting HCI design opportunities to improve
model reliability by increasing contextual awareness, supporting
end-user customization, and fostering the collective improvement
of sound recognition models.
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1 INTRODUCTION
People who are deaf and hard of hearing (DHH) may have limited
access to the sounds in their environment, potentially hindering
them from effectively performing everyday tasks (e.g., knowing
when the washing machine is done) or being aware of their en-
vironment (e.g., noticing sirens or water running). Motivated by
this challenge, researchers have developed and studied systems to
help DHH users interact with sound information. These systems
range from early desktop-based solutions that visualized sound
position [18], volume [8, 14], or frequency [29] to mobile-based
sound awareness tools that help DHH users localize sound [12, 14],
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caption speech [14], or recognize sound source [3, 8, 12–14] in
different contexts.

Evaluations of mobile sound awareness tools have been con-
strained to the lab or controlled environments [5, 10, 22]. For ex-
ample, Bragg et al. [5] conducted a Wizard of Oz study lab study
to evaluate a preliminary smartphone app that recognized two
sounds (door knocks and alarm clock). Jain et al. [22] evaluated a
smartwatch-based deep-learning sound recognition solution for
a few minutes in selected contexts (an office, a building lounge,
and a bus stop), quantifying performance on a dataset of sound
recordings.

While these evaluations have provided valuable insights into the
technical feasibility of mobile sound recognition, these short-term
evaluations have limitations. First, the hand-selected “controlled”
scenarios do not accurately represent the dynamic acoustic condi-
tions of the real world (e.g., a crowded restaurant vs. a quiet home).
Second, the evaluations of system performance in these studies
were primarily based on the classifications of high-quality sound ef-
fects or sound recordings and did not fully capture the variability of
real-life sounds (e.g., beeps from different microwaves) and ambient
noise (e.g., raining). Third, the controlled evaluations may overesti-
mate the system’s robustness by overlooking user behaviors and
edge scenarios with the device (e.g., obstruction of the microphone
by jacket sleeves). Finally, insights from short-term user studies do
not reflect the long-term experience of the system, including the
adoption, social implications, and the change of use over time.

To address this gap, we conducted a three-week field study to
evaluate the real-world use of the mobile-based sound recognition
system with 10 DHH participants. Among the possible mobile and
wearable options, we selected smartwatches for our evaluation due
to their availability on the wrist, which offers two important advan-
tages: (1) obstruction-free microphone (compared to a smartphone,
which may be kept in the pocket) and (2) ability to provide instant
vibrational feedback for attention. Indeed, smartwatches were the
most preferred sound feedback devices by DHH people in a recent
large-scale survey with 201 participants [9]. Specifically, we used
SoundWatch, a publicly available sound recognition app that clas-
sifies sound locally on a smartwatch and provides real-time visual
and vibrational feedback about three key sound properties: sound
identity, loudness, and time of occurrence (Figure 2) [22]. Since
SoundWatch was released three years ago, we replaced the under-
lying model with the state-of-the-art sound classification model for
portable devices and used the updated app for our field study.

During the study, participants provided regular feedback through
emails, texts, and weekly surveys. At the end of the three weeks
usage period, we additionally conducted a semi-structured inter-
view to collect feedback on the overall experience of using a mobile
sound recognition app, any observed change in sound awareness,
thoughts on social and privacy implications of an always-sensing
app, and any improvement suggestions.

Our findings demonstrate the mobile sound recognition solu-
tions’ capability to enhance DHH users’ sound awareness and help
them perform everyday tasks in diverse contexts, reaffirming the
findings from previous work [9, 10]. However, the app’s reliabil-
ity issues, especially the errors in varying acoustic contexts and
ambient noises, hindered the effective adoption of this technol-
ogy in everyday life. Participants indicated the need to improve

the adaptability of sound recognition models and provided sugges-
tions for interaction design ideas to mitigate the risk of AI errors.
We conclude by outlining design guidelines to make future sound
recognition technology more useable and adoptable.

Our work makes the following primary contributions: (1) the
first longitudinal field study of a mobile sound recognition system
to assess its feasibility for daily use by DHH users, and (2) design
guidelines, especially for future human-AI interactive systems, to
address potential errors from sound recognition technology.

2 RELATEDWORK
We provide a background on Deaf culture and DHH people’s sound
awareness needs as well as situate our work within sound aware-
ness technologies, other assistive technologies, and Human-AI de-
sign considerations.

2.1 Deaf Culture and Sound Awareness Needs of
DHH People

The DHH community encompasses people who identify as Deaf
(capital ‘D’), deaf (lowercase ‘d’), or hard of hearing [8, 43]. Indi-
viduals who identify as Deaf embrace Deaf Culture [8, 31, 43] and
follow an established set of norms and languages like American
Sign Language (ASL). In comparison, deaf or hard-of-hearing in-
dividuals connect to hearing loss from a medical or audiological
perspective and may not necessarily identify with the Deaf Culture
[8, 31]. These cultural differences may lead to different preferences
regarding sound awareness, such as differing sounds of interest
preferences [5]. For example, hard-of-hearing people may desire
speech or other sounds related to human activity (e.g., footsteps,
doorbells) more than Deaf people [9].

While we gracefully acknowledge these differences, we also
point out that, in several past studies [5, 9, 29]—including a recent
large-scale survey with 201 DHH participants [9]—DHH people
from all cultural groups have expressed the need for greater access
to sound information in their daily life. Among the possible types
of sound information, DHH people see sound identity (e.g., “dog
barks,” “emergency vehicles”) as the most desired characteristic
among others (e.g., sound volume and frequency) [9]. Furthermore,
smartwatches were the most preferred form factor, and the combi-
nation of haptic and visual feedback was the most popular sound
feedback modality [9].

Our field study builds on the above findings and extends our un-
derstanding of DHH people’s sound awareness needs by gathering
feedback from real-world usage of a smartwatch sound recognition
system.

2.2 Sound Awareness Technologies
Early work studied stationary visualization systems for sound
awareness of DHH people [18, 29, 30, 38], including desktop
monitor- [18, 29] and projector-based [38] visualizations. For exam-
ple, Ho-Ching et al. [18] designed desktop interfaces that visualize
sounds with spectrographs and “positional ripples” to represent
the loudness and location of the sound. Tomitsch et al. [38] pro-
posed sound visualizations that utilize large-scale projections on
the ceilings. Matthew et al. [29] evaluated several prototypes of pe-
ripheral visualizations of non-speech sounds (e.g., icons, maps, and
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spectrograms). These solutions focused on the basic ambient sound
properties (e.g., loudness, pitch) but were not able to recognize and
distinguish individual sound sources.

In terms of sound recognition pipelines, early methods used
silence ratio [15], variations of zero-crossing rates [13, 15], and
shallow learning (e.g., support vector machine [25] and decision
tree [28]) to classify audio data. However, these limited methods
used very few sound classes (e.g., speech vs. music), worked only
clean sound files or struggled to maintain accuracy in diverse envi-
ronments. Laput et al. [26] developed a sound-based activity recog-
nition system that leveraged a deep learning approach to classify
sound events, demonstrating the feasibility and flexibility of deep
learning-based sound recognition across physical contexts. How-
ever, this system utilized a large memory-intensive model, which
was not conducive for deployment on portable devices.

More recently, researchers have begun studying mobile sound
recognition systems. For example, Bragg et al. [5] designed a smart-
phone app that allowed users to record sounds and train the model
on the go. Their preliminaryWizard-of-Oz study found that the user
interface effectively facilitated the training process and could be
potentially successful in alerting users to the surrounding sounds.
Goodman et al. [10] conductedWizard-of-Oz and controlled studies
with 16 DHH participants to evaluate smartwatches-based sound
feedback designs and demonstrated the promise of using a com-
bination of vibrational and visual feedback for sound awareness.
Specifically, visual feedback provides intuitive sound information,
while haptic feedback help capture users’ attention without dis-
rupting current tasks. However, both approaches studied formative
sound feedback designs that are not implemented as working proto-
types; thus, they did not offer insights into the technical feasibility
of recognizing sounds.

Towards working prototypes, Liu et al. [37] developed a
smartphone-based acoustic sensing and notification app that used
a lightweight deep convolutional neural network (CNN) model to
enable context-independent event recognition. Similarly, Jain et al.
[22] developed a smartwatch-based sound recognition application
powered by a transfer learning-adapted deep-CNN classification
model (i.e., VGG). Evaluations of both prototypes demonstrated
promising results, such as high responsiveness and accuracy in
recognizing and notifying sound events. However, those evalua-
tions were either short-term (e.g., two-day discontinuous user tests)
or controlled (e.g., designated contexts), therefore offering limited
insights into the real-life, longitudinal use of mobile sound recogni-
tion systems. In contrast, Jain et al. [21] conducted a three-week
field study by deploying a sound recognition system at partici-
pants’ homes. However, this approach used stationary displays and
studied a single context—homes. We extend this work to mobile
technologies and evaluate their real-life feasibility and utility across
diverse contexts.

In summary, while prior work has studied mobile and wearable
sound recognition tools for DHH users, the evaluations were re-
stricted to lab or controlled settings and did not offer comprehensive
insights into the utility of these systems for highly variable real-life
use (e.g., in the presence of ambient noises, differing user behaviors,
and changing acoustic contexts) – a gap we address in our work.

2.3 Privacy and Social Implications of Assistive
Technologies

DHH users generally considered sensing activities from assistive
devices acceptable [21]. However, an interview with older adults
experiencing pointing difficulties showed that users of intelligent
assistive technologies might be concerned about the handling of
their personal data [16, 17]—a concern exacerbated by the lack of
transparency in data policies [17]. This research highlighted the
importance of openly communicating how data is handled and
keeping the data anonymous. At the same time, some users were
willing to share their personal data for the goodwill of improving
the technologies, indicating a potential tension with disclosure
[16]. Akter et al. conducted online surveys on people with visual
impairments’ opinions towards camera-based assistive technologies
showing that, if not designed carefully, assistive technologies could
be prone to improper usage that violates bystanders’ privacy [1]. In
the present study, we probe these privacy concerns with DHH users
while evaluating a mobile sound sensing and recognition device.

Assistive technology use could also introduce social tensions
[6, 33–36]. For example, in a recent study, blind employees’ use
of screen readers during synchronous meetings was perceived as
“disruptive” [6]. A large-scale crowdsourced survey with 1200 in-
dividuals argued that the use of head-mounted displays would be
considered socially acceptable only if used by people with disabil-
ities, which could cause burden regarding disclosure of disability
status [33]. DHH people have also reported feeling self-conscious or
sensitive to other people’s perceptions when wearing hearing aids
[36]. Shinohara and Tenenberg showed that these social tensions
can be reduced by adopting more “socially acceptable” designs [35].
We explore these tensions in our work.

2.4 Human-AI Design Challenges and Strategies
Our work is also informed by prior work in human-centered AI, in-
cluding Amershi et al.’s guidelines for human-AI interaction [2] and
Google PAIR’s guidebook for designing AI products [47]. Google
PAIR guidebook specifies several types of AI errors, which include
the prediction error that is closely related to our current study. Since
assistive technologies are essential for some users with disability,
the stakes of AI errors can be high, eliciting the need to grace-
fully address these errors [47]. First, AI systems should support
efficient correction and teaching from end users [2, 47]. For exam-
ple, ImageExplorer encourages blind users to be skeptical about
AI-generated captions and helps them determine their correctness
by providing additional information [27]. Similarly, ProtoSound
enables users to train the sound recognition system to detect spe-
cific sounds by recording their sound samples [20]. One caveat of
this strategy is that some disabled/Deaf users may be unable to
provide feedback [32]. For example, DHH users may not be able to
effectively determine the correctness of a sound recognition model
if they are unable to hear the sounds, suggesting the need for visu-
alizations to assist them in the task [20]. Second, users should be
able to invoke the AI system or disregard the AI output efficiently
[2]. SoundWatch implements this guideline by enabling users to
“snooze” notifications for certain sounds. Finally, AI systems should
acknowledge and signal uncertainty when in low confidence [2, 47].
To our knowledge, little prior work has explored this strategy in
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Figure 2: The SoundWatch user interface showing: (a) a partial view of the paired phone app to choose the list of enabled
sounds, (b) the watch app background screen when sound sensing is enabled, (b) and the notification screen with an in-built
“10-minute” snooze button. Additional snooze durations are supported (e.g., 5 minutes, 20 minutes, 1 hour, and forever) but are
not shown above.

working AI systems. We explore these considerations by obtaining
DHH users’ feedback on two interactive design prototypes aimed
at mitigating AI sound recognition errors.

3 THE MOBILE SOUND RECOGNITION
SYSTEM

Our system preference was informed by four goals: (1) portable
support for diverse contexts, (2) availability of obstruction-free mi-
crophones, (3) support of both visual and haptic feedback to timely
capture users’ attention, and (4) glanceable and readily accessible
visual display. These goals were informed by prior surveys with
DHH participants [9], who desired a glanceable, always-available,
and unobstructed portable sound recognition system to support
their sound awareness needs across multiple contexts.

Based on the above goals, we chose the SoundWatch app for our
study, a publicly-available Wear OS/Android sound recognition
app for DHH users designed by researchers from University of
Washington [22]. SoundWatch uses an on-device deep CNN-based
model to sense and classify sound among 20 categories (e.g., dog
bark, door open) on a conventional smartwatch in real-time. After
processing the sound, the app conveys key sound characteristics
desired by DHH people: the type or sound (or the sound identity),
the loudness (or volume) of the sound, and the time of occurrence
through the visual display (see Figure 2). Additionally, the app
informs users of the occurrence of a sound through a push vibratory
notification.

SoundWatch also includes other features to support customiza-
tion. For example, users can choose to snooze to sound category for
a certain period in cases where they may not desire repeated notifi-
cation (e.g., snoozing “speech” alerts while talking to somebody).
As well, a companion smartphone app allows users to: (1) disable
notifications for undesired sounds and (2) set the base minimum

loudness threshold (called the microphone sensitivity) for sensing
sounds.

Importantly, SoundWatch’s codebase is fully
open-source and well-documented in the repository
(github.com/AccessibilityLab/SoundWatch), which allowed
us to readily extend the app to support requisite features for our
field study (e.g., data logging and model updates).

3.1 Selecting the Sound Recognition Model
SoundWatch was released in Nov 2020. Since then, many advance-
ments have occurred in the field of machine learning, leading to
smaller and more reliable deep-learning models. To ensure we are
using the state-of-the-art model, we compared the performance of
SoundWatch with two recently released mobile sound recognition
systems–Google’s Sound Notification App [46] and Apple iOS’s
built-in sound recognition feature [48]. Both Google and Apple have
released the sound recognition model and the companion code pub-
licly, which allowed us to compare performance with SoundWatch’s
native MobileNetV2 CNN model.

We evaluated performance on the dataset from SoundWatch’s
original paper [22], which contains samples for 20 sound classes
recorded from nine real-world locations (three homes, three offices,
and three outdoor locations). The total dataset spans 1.5 hours and
contains 540 recorded sound clips. We did not use common ML
benchmarks since they contain synthetically generated high-quality
sounds and do not accurately represent real-world characteristics.

For our experiment, we classified each sound using the three
approaches and calculated the classification accuracy using a
clip-level prediction. Our results show that the performance of
the three approaches was comparable, with the Google’s (mean
accuracy=83.6%, SD=4.9%) fairing slightly better than SoundWatch
(mean accuracy=81.2%, SD=5.8%) and Apple’s (avg accuracy=80.3%,
SD=6.1%). Consequently, we replaced SoundWatch’s MobileNetV2
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Table 1: Participants’ background information. PMoCw/Deaf/deaf stands for “PreferredMode of Communicationwith Deaf/deaf
people”; PMoC w/Hearing stands for “Preferred Mode of Communication with Hearing people.”

PID Gender Age Identity Hearing Loss PMoC w/Deaf/deaf PMoC w/Hearing

P1 M 24 Deaf Profound Sign Language Interpreter
P2 M 51 deaf, HoH Severe Verbal, Writing, Text Verbal
P3 M 64 Deaf Severe Verbal, Writing Verbal
P4 M 65 HoH Severe Writing Verbal
P5 M 75 HoH Severe Verbal Verbal
P6 F 60 HoH Severe Verbal, Sign Language Verbal
P7 M 23 HoH Severe (L), No (R) N/A Verbal
P8 M 43 deaf, HoH Profound Verbal Verbal
P9 M 21 Deaf Profound Sign Language Sign Language
P10 M 60 HoH Moderate Verbal Verbal

model with Google’s YAMNet architecture [49] and used the resul-
tant app for our field study.

4 METHODS
4.1 Participants
We recruited 10 DHH participants through study ads, snowball
sampling, and emails (Table 1). The average age for the participants
was 48.6 years old (SD=19.78, range=21—75). In terms of onset
ages of hearing loss, three participants reported congenital hearing
loss, two reported onsets at 2 years old, and the remaining five
reported 6 months, 7 years, 40 years, 44 years, and 61 years. In terms
of the technologies participants currently use to support sound
awareness, seven reported using captioning (e.g., Live Transcribe
[50], Zoom’s audio transcription [51]), five reported mobile apps
(e.g., ReSound 3D [52], InnoCaption [53]), and one reported using
Google Nest Aware [54]. In terms of hearing devices, seven reported
using hearing aids, and two reported cochlear implants.

4.2 Procedure
The study contained three parts: (1) an initial interview and sys-
tem demonstration, (2) three-week use of the SoundWatch systems,
and (3) an exit interview (see Figure 1). Both initial and exit inter-
views were conducted in the Accessibility Lab at the University
of Michigan campus. All sessions were audio and video recorded.
We provided the participants an option to request any disability ac-
commodations: one participant (P3) asked for a real-time captioner,
and another (P1) attended the interview with their own Personal
Care Attendant and ASL interpreter. To help participants accurately
understand the questions, we presented all the interview questions
in a slide deck on a Microsoft Surface Go tablet.

4.2.1 Initial Session. The initial sessions were conducted by the
first author. We proceeded with the sessions once we received our
IRB-approved written consent form from the participants. We first
asked the participants to complete a short background form to
collect demographic information such as age, gender, and level of
hearing loss. Then, we interviewed participants about their experi-
ences with sounds in daily life, including their desired sounds of
interest, current tools and strategies to experience sounds, and any
remaining challenges in accessing sounds. Finally, we explained

SoundWatch, the smartwatch-based sound awareness system, gave
a detailed demonstration of the system, and handed participants:
(1) a smartwatch with the SoundWatch app installed (TicWatch Pro
3 Ultra), (2) the paired Android phone (TCL 30XL), and (3) a paper
manual detailing the SoundWatch user-interface and frequently
asked questions. We also encourage the participants to experience
SoundWatch on their own for a few minutes in our lab by produc-
ing sounds (e.g., by knocking on the door or tapping) and ask any
follow-up questions. We gave the participants mid-range devices
for the study (TicWatch Pro 3 Ultra and TCL 30XL) because they
offered real-world applicability. To detail specifically, the TicWatch
Pro watch has 1GB RAM and a quad-core (four 1.7 GHz Cortex-
A53) processor and lasts for 18.0 hours and 14.2 hours with and
without the SoundWatch app. The TCL 30XL phone contains 6GB
RAM with an octa-core (four 2.0 GHz Cortex-A53 and four 1.5 GHz
Cortex-A53) CPU.

The duration of the initial session ranged from 45 to 90 minutes.
The completion time differed across participants because 1) they
used different communication strategies, from sign language to
verbal to real-time captioning, and 2) some participants took more
time to familiarize themselves with the smartwatch and the Sound-
Watch app. The entire session was recorded with Google Recorder
app and the video camera.

4.2.2 Three-week Use of the SoundWatch System. After completing
the initial interview, participants used the SoundWatch application
on the watch and phone we gave for three weeks in their daily lives.
At the end of weeks 1 and 2, we asked participants to complete a
short online survey containing three open-ended questions on the
overall experience, usage contexts, and any particularly helpful or
unhelpful incidences. We emailed a link to the online survey a day
before it was due. If a participant failed to complete a survey, we
sent a single reminder after 24 hours. We also offered participants
the option to contact us through text or email anytime for any
questions, concerns, or feedback.

Within the SoundWatch app, we curated an automatic logging
system that collected information about the sounds recognized,
timestamps, and participants’ interactions with the app. The in-
dividual logs were stored locally on participants’ phones, while
the aggregated logs were uploaded periodically to the Firebase
server. The logging system was designed to be privacy-preserving,
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Table 2: Exit interview questions and categories.

Category Num. Questions Examples
Overall usage and experience 3 “Could you describe your overall experience with the

[SoundWatch] app?”
Contexts of use 3 “In what contexts or scenarios did you use the app?”
Helpfulness of the app 2 “You mentioned [sounds] to be particularly challenging to

experience. Which of those sounds did SoundWatch help with?”
Privacy and social implications 3 “How do you feel about the app continually sensing sound

information around you?”
Information overload 1 “How do you feel about the amount of information the app’s

sound notifications provided you with?”
User interface 3 “Overall, what do you think of the interface of the app?”
Other suggestions 1 “Do you have other suggestions for improving the app?”
Misattributions 2 “What did you do when you encounter inaccurate predictions?”
Evaluating alternative designs 5 “What do you think if the app notifies you about sound like this

instead [presenting designs]?”
Overall sentiment 3 “What do you think of wearables as sound awareness devices in

general?”

meaning that under no circumstances were any continuous sound
information (e.g., speech or sound activities) collected.

4.2.3 Exit Interview. After three weeks of app use, we invited the
participants back to our lab at the University of Michigan campus
and conducted another interview on their experience using the app
in their daily lives. During the interview, we asked 25 questions in
10 categories (see Table 2).

Overall usage and experience. This category aimed to under-
stand the usage pattern and overall experience of the SoundWatch
app. We asked about the usage time per week, usage patterns over
time, and the overall experience using the app.

Contexts of use. We asked about the contexts and scenarios
where they used the app and how their experiences varied across
different contexts.

Helpfulness of the app.We sought to understand the situations
where SoundWatch had been helpful and the remaining challenges
not addressed by the app usage.

Privacy and social implications. This category of questions
aimed to understand the privacy concerns from SoundWatch’s
continuous sound sensing and other people’s perceptions of it.

Information overload. We asked participants about the
amount of information offered through push notifications.

User interface.We obtained feedback on the design of the visual
display and vibration interface.

Other suggestions. We prompted participants to provide addi-
tional design suggestions to improve the app.

Misattributions. After obtaining overall feedback, we asked
participants about their reactions to inaccurate sound recognition.

Evaluating alternative designs. We invited participants to
share their thoughts on potential designs for future mobile sound
recognition solutions. Our aimwas twofold: (1) understanding DHH
people’s preferences for user-programmable sound recognition
systems and (2) exploring interaction designs that address AI errors,
including showing uncertainty and user-initiated error correction.

Overall sentiment. Near the end of the interviews, participants
shared any remaining thoughts and open-ended comments about
the app.

After the interview, we collected the devices back and handed
participants $150 cash as research payments. The sessions lasted
55 to 70 minutes and were audio and video recorded.

4.3 Analysis
We analyzed the survey responses, interview transcripts, and
texts/emails through a combined thematic analysis by treating each
question or text/email thread as a separate unit. Specifically, we
used Braun and Clarke’s six-phase approach [7]. The first author
skimmed the transcripts to familiarize with the data (step 1) and
discussed with the research team to generate an initial codebook
(step 2). The researcher then iteratively applied codes to the data
while refining the codebook. The final codebook had a 3-level hier-
archy: 8 first-level, 29 second-level, and 80 third-level codes (step
3). Another researcher used this final codebook to independently
code all data (step 4). We then calculated IRR (interrater reliability)
between the two coders using the ReCal2 package [55] and resolved
disagreements via consensus among our research team. The aver-
age Krippendorff’s alpha value was 0.65, and the raw agreement
was 83.1%. Finally, we organized the themes into subsections (step
5) and formed our narrative (step 6). We have attached the final
codebook as supplementary material.

For the automatic quantitative log data, we calculated the average
number of sound events per day throughout the three weeks and
the total occurrence for each sound type.

5 FINDINGS
Our findings detail usage patterns of the SoundWatch app, observed
errors in sound recognition, user interface suggestions, and privacy
implications. We also elicit participants’ ideas for improving mobile
sound recognition in the future, including feedback on two mid-
fidelity design prototypes to mitigate AI errors.
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Table 3: Participants’ reported locations of use with examples scenarios.

Context Counts Example Scenarios

Home 9 Living room, bedroom, kitchen
Social 6 Family dinner, visiting friends
Vehicle 6 Cars
Work/School 6 Classroom, office, warehouse
Outdoor 5 Hiking trails, walking on campus
Commercial 5 Restaurants, shopping malls
Crowd 4 Sports events, conferences
Transit 3 Bus, plane

These findings represent data collected from (1) the two inter-
views and two weekly surveys completed by our participants, (2)
an additional 16 email threads and 23 text messages initiated by
our participants to provide more feedback, and (3) automated logs
from the SoundWatch app. Quotes are verbatim from participants’
responses but lightly edited for grammar.

5.1 Usage Patterns
Participants reported that they wore the watch consistently, except
while sleeping and in situations where potential collisions with
hard surfaces might happen (N=2) (e.g., construction and ware-
house). In addition, P10 did not wear the watch on the weekends. In
terms of location, participants used the app at home (N=9), in social
situations (e.g., family dinner, visiting friends; N=6), in vehicles
(N=6), at workplace and school (N=6), in commercial spots (e.g.,
restaurants and stores; N=5), and in-transit (N=3). Table 3 details
the specific scenarios of use in each location.

SoundWatch provides an option to select/deselect among a list of
sounds to enable/disable them from recognition. Almost all partici-
pants (N=8) enabled all the sounds listed. The other two participants
disabled the bird chirping sound because of the frequent false posi-
tives. From the automatic logs, we found that the app recognized
112.7 sound events per day across all participants (SD=60.7) (169
on average (SD=79.9) for participants who disabled some sounds).
Among the specific sound types, bird sound was recognized most
frequently, closely followed by water running and dog bark.

Participants reported that they generally paid attention to every
sound notification early in the study. For example, P4, P6, and P8
reported that, even if the prediction was inaccurate, a notification
from the watch could indicate a sound occurring, and they would
still try to locate the sound source. P6 explained:

“I would try to figure out what was making the sound. . .
Sometimes it might be just false positives. But I never
assumed it was nothing.”

However, towards the end of the study, some participants stopped
paying attention, either because they became familiar and desen-
sitized to the notifications (N=3) — such as P6 who reported that
they “dismissed” or “ignored” unimportant sound feedback after
several days of use or P7 who reported that when he felt a vibration
on the street, he would “automatically assume that it was vehicles
passing” — or because they got annoyed with the frequent errors
(P9). We describe these errors in the next section.

5.2 Feedback on Sound Recognition
There were some impactful cases where SoundWatch helped par-
ticipants monitor the state of the environment (e.g., noticing their
children opening the doors) and performing everyday tasks (e.g.,
noticing incoming while walking on the streets). However, all par-
ticipants (N=10) reported errors from sound feedback, with five
explicitly stating that the app was not ready for daily use or long-
term deployment due to several errors. Those errors broadly fell
into four categories: false positive, false negative, misattribution,
and registering background noise (e.g., rain, TV sounds).

The most common error category was the false positives (N=6).
Most of the false positives were about animal sounds. For example,
among all sounds, birds got triggered the most frequently as the
sound prediction (N=4); three participants reported that clothes
like jackets and shirts can trigger bird predictions. This might be be-
cause of the resemblance between sound patterns of birds chirping
and fabrics rubbing against other surfaces. Similarly, P2 reported
receiving “duck/goose” predictions while driving on the highway,
whichmight again stem from the similarity between car sounds (e.g.,
engines) and duck quacks, suggesting a need for future algorithms
to distinguish among similar sounding sounds.

For some participants, the frequent false positives were espe-
cially concerning because they caused desensitization to the app’s
notifications, potentially risking missing important sounds. P4 ex-
plained:

“When I got wrong predictions every time, I just learned
to ignore it. But it’s like the boy that cried wolf. . . what
if next time, you ignore the [notification] and realize
that, oh shoot, I should have paid attention.”

For P9, the false positives were so annoying that they reduced the
usage on the last week of the study due to the “growing frustration”
and “burnout.”

The secondmost common categorywas the false negatives (N=4),
where SoundWatch failed to recognize sounds enabled by the par-
ticipants. Some of the missed sounds were critical. For example, P1
and P9 mentioned that emergency vehicles were sometimes not
recognized on their way to school or work, possibly due to the
environmental noise and the threshold settings for loudness (the
lowest threshold for SoundWatch to recognize sounds is 40 dB).
While we especially explained to the participants that SoundWatch
should not be relied on in critical safety-related situations, acciden-
tal overreliance on the technology in the future could be dangerous
and careful guidelines are needed before wide deployment. Other
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reports of false negatives concern everyday sounds that may be
unique to their environments. For example, P4 reported that door-
knocking was “hit-and-miss.” This inconsistency in recognition
might be caused by the variability in the materials of the doors.
Similarly, the app’s failure to recognize doorbells (P2, P4) and appli-
ances like microwaves (P4, P8) might be caused by the variability
in the makes or models of appliances.

Another common error (N=3) was misattribution (classifying a
particular sound as another). P3 and P5 reported that the system
frequently registered beeping or buzzing sounds (e.g., microwaves,
medical devices, and basketball court buzzers) as fire or smoke
alarms. While P5 was able to verify that there was no fire alarm
present, P2, who identified as Deaf, was confused by the sound
feedback:

“I was in the hospital. . . and am hooked up to a heart
monitor. And I received a notification from the system.
I was like, ‘Wait a second, a smoke alarm?’”

This experience demonstrates the risks of misattributions in
critical settings and the need for the graceful handling of AI er-
rors in sound recognition. Other cases of misattributions involved
human speech and activities. For example, P7 reported that lec-
turers were registered as “dog barking.” P10 encountered similar
errors, saying the system would recognize the chat with colleagues
as “duck/goose.” However, interestingly, he thought these errors
were more “entertaining” than alarming, as he would joke with his
colleagues to “check if any goose is paddling around.” One possible
way to address this issue is by implementing contextual awareness.
For example, if the system recognized that users were in a hospital
environment, it could temporarily tune up the confidence threshold
required to report a fire/smoke alarm.

Despite many reported errors, participants did indicate that
SoundWatch has been helpful for them in many ways. Half of
the participants (N=5) reported that the app helped increase the
awareness of their environments— for example, by helping them
stay aware of their children’s movements in the house through
“door-in-use” and “footsteps” notifications (P8) and noticing the
bird chirping on hiking trails (P3). Critically, the vehicle sound
feedback helped P7 detect incoming traffic. He explained:

“Things like vehicles are actually very helpful, especially
when I am outside. . . it’s like shooting me a message
and letting me know that there is a car coming.”

SoundWatch also helped participants perform everyday tasks.
For example, the system reminded P8 of the running water in the
kitchen sink. It also helped P6 and P7 notice door-knocking in hotel
rooms and at home. P8 added that while the system is “not perfect,”
it was “generating an overall awareness that something was hap-
pening.” These useful cases suggested that if the errors described
previously were fixed, the system would have the potential to help
DHH people monitor their environments (e.g., watching the kids),
performing everyday tasks (e.g., noticing the door knock), and keep-
ing them safe by notifying them of critical events (e.g., incoming
traffic). Indeed, seven participants explicitly mentioned that this
technology holds many promises in the future. For example, P10
said:

“There is no question in my mind that the idea of having
a wearable device being able to help people who can’t

hear things is very beneficial. My phone flashes every
time I get a text message to help me notice it. . . this is
like that.”

However, until these errors are completely fixed, system guide-
lines should carefully indicate that the system can fail and should
not be relied on for safety-critical situations (e.g., fire alarms, sirens).

5.3 User Interface
While the participants’ sentiments on the SoundWatch’s sound
recognition engine were mixed, they generally (N=7) liked the
design of the SoundWatch interface, saying it was “intuitive” and
“simple to use.” Below, we describe their comments on the app’s
visual display and haptic feedback.

5.3.1 Visual display. SoundWatch delivers sound feedback through
push notifications on the watch. The sound feedback includes sound
identity, loudness, and time of occurrence (see Figure 2). The notifi-
cation UI also allows users to snooze the sounds for a period. Most
participants (N=7) approved of the design of the visual feedback.
For example, P8 thinks the amount of information is “spot on.” P7
echoed: “Everything basic is on the screen.” Both P6 and P8 liked the
display of loudness information. For example, P6 said:

“The decibel is very useful when I am not wearing hear-
ing aids. . . it gives me a sense of if it’s something I
should be concerned about.”

While P4 shared similar sentiments about the visual display, he
also mentioned that the UI fonts could be challenging to read for
someone who uses corrective glasses, suggesting the need to be
able to customize the display:

“It would be nice if we can increase the font size. . . I
would like the ability to make the [notification] a little
bigger so I don’t have to grab my glasses.”

Additionally, five participants desired more information, like the
sound direction, to help locate the sound source. P6 explained:

“If I see water running, I will be wondering, where did
the sound come from? So, you get to walk over all sources
of water to locate it.”

P7 considered sound direction a more important characteristic
than loudness, which differs from P8, who thought the loudness
information was more helpful. This diversity in information prefer-
ences again points to the need for allowing customization to suit
individual users’ UI needs. Three participants mentioned that the
sound identity displayed on the watch was too generic. For example,
P4 stated:

“When the “vehicle” popped up on the watch, I don’t
know what it was pointing to. . . was it the water run-
ning, or is it the beeping sounds from the truck backing
up? I had no idea.”

Future improvements can address this through more granular
descriptions of sound objects, such as involving behaviors of the
sound object (e.g., changing “vehicle” to “vehicle passing”).

5.3.2 Haptic Feedback. While some participants appreciated the
vibrational feedback about sound events (P6, P8), others expressed
some frustrations. For example, five participants mentioned that
the vibration is too subtle or short despite configuring the vibration
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intensity to the highest in system settings. P9 mentioned: “[The
vibration] could be a bit strong honestly. . . I have missed some notifi-
cations because of that.” P1 reported the same experience.

In addition to configuring vibration intensity and duration, P3
suggested giving users the ability to customize the vibration pat-
terns to differentiate sound events with different levels of urgency:

“There could be different vibrations for different kinds
of things. . . there could be light vibrations for sounds
that were nice to know, like ‘Oh, there is a bird on the
tree,’ and stronger vibrations for real urgent stuff like
large vehicle approaching from behind.”

5.4 Privacy
During the initial interview, we explained the privacy-protecting
measures, including local on-device processing and storage of sound
information, and that only the aggregated data will be uploaded to
the cloud (i.e., Firebase). After three weeks of system use, most par-
ticipants (N=7) reported no privacy concerns, but some understood
that other people’s potential concerns:

“I could see someone being sensitive to it. . . you know,
they might think the microphones are spying on them.”
(P3)

Interestingly, while P8 reported no privacy concerns, he men-
tioned, "I’ve got Google Nests all around my house,” saying that
smart devices sensing information is “inevitable.” This indicated an
alarming lack of end-user agency in managing privacy.

Despite general acceptance of the system, three participants
expressed privacy concerns at some point during the study. P2
stated: “I think privacy is something that came to my mind, but it was
not something that I let overrun.” This suggests that the perceived
benefits may outweigh the potential privacy risks. P4 explained
that most of his privacy concerns stemmed from “not knowing
how the system uses the data it gathers,” indicating users’ inherent
skepticism toward novel technologies and the need for more sys-
tem transparency beyond verbal explanations. This reflection was
echoed by P7, who learned about the technical background of the
SoundWatch system:

“I was a little apprehensive at first, but because of the
fact that I know how the system works under the hood
and that it cannot necessarily get the speech itself from
the features you extract, I was fine with it.”

P7 added that he would “take the watch off and keep it inside
the drawer” when the friends came over but stopped doing it over
time. Indeed, most participants (N=7) reported no concerns from
other people regarding the app’s continuous sensing of sound
information—although some close family and friends had initial
questions about the sound sensing pipeline. These concerns were
mitigated after participants explained how the system works, indi-
cating that proper disclosure and transparency on system behavior
is crucial in gaining social acceptability.

5.5 System Improvements
We present participants’ design ideas for improving the app as well
as their feedback on the designs that address AI errors and allow
user-programmable sound recognition.

5.5.1 Design Ideas from Participants. During the interview, par-
ticipants offered concrete design suggestions to improve mobile
recognition systems. The above sections mentioned some of them,
including sound localization and customized vibration patterns.
Here, we present other suggestions.

Logging. Five participants suggested logging past sound events
for retrospective viewing.While the smartwatch operating system’s
notification center could store recently recognized sounds, partici-
pants desired the ability to retrieve sound predictions “further back”
(P5) and provide feedback to inaccurate predictions “from memory”
(P9). Moreover, P6 said:

“Sometimes I would ignore [the notifications] when I
was busy. . . I wish I could play back the sound, but
louder, so you can hear it and figure out what it is.”

Logging sound events is not a novel suggestion. For example, Jain
et al. [21], for example, designed an IoT system that visualized sound
activities sequentially, which provided DHH users with insights
into the behaviors around the house. However, they visualized
sound history on a bigger tablet display, and it will be interesting to
explore visualizations for a small smartwatch display or the paired
smartphone app.

Customizable and adaptive systems. Participants desired
more customizability and adaptability of the sound recognition
system. For example, P4 suggested granular controls on the base
sound level, a SoundWatch feature that allows users to adjust the
loudness threshold for reporting sound:

“It would be nice if certain sounds like the trigger
point can be individually [configurable] based on which
sound, because if you move the [base sound level] set-
ting up to 50 decibels, it affects everything, and it takes
away my ability to hear all these other sounds.”

Other participants suggested adaptive features like prioritizing
sounds based on contexts (N=2). For example, P5 suggested that the
system can “enable and disable sounds based on different settings.”
P5 added that this idea was inspired by the adaptive feature on the
hearing aids, where multiple “preset programs” are available for
different environments.

5.5.2 Participant Evaluations of Human-AI Sound Recognition Sys-
tem Designs. To explore future designs of mobile sound recognition
systems, we sketched a storyboard (Figure 3) and two mid-fidelity
prototypes (see Figure 4) regarding future iterations of the Sound-
Watch app and asked participants for feedback.

The storyboardwas about user-programmable sound recognition
systems and was inspired by emerging research [20, 42] and partic-
ipants’ reports of misattributions from the weekly survey. In the
storyboard, a DHH user (“Amanda”) trained a mobile sound recog-
nition system to recognize her dog “Jessie” by recording sound sam-
ples of “Jessie” barking. Before we presented the storyboards, most
participants had already suggested this feature during the interview.
Their motivations for this suggestion came from their encounters of
sounds not being recognized (e.g., microwaves, doorbells, washing
machines), remaining challenges not addressed by the system (e.g.,
name-calling), and that the current sound categories were “limited”
(P9). For example, P7 explained his suggestions about recognizing
names:
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Figure 3: The storyboard for user-programmable sound recognition.

Figure 4: The two prototypes for Human-AI interaction designs. Prototype (A) acknowledges uncertainty by showing multiple
possible predictions. Prototype (B) allows users to report and correct AI errors using the “inaccurate” button.

“Someone calling my name is probably one of the most
important things. . . and I noticed that people from dif-
ferent nationalities pronounce it differently. So it will
be really helpful if I can record my friends calling my
name, and the watch can let me know when they do.”

All participants (N=10) appreciated the ability to personalize the
system to recognize sounds in their environments. For example, P6
explained: “Everybody’s home and work situations are different, so I
can see it being very helpful.”

Despite the general approval of this approach, participants
brought up scenarios where recording sounds can be challeng-
ing, including encountering sounds that are not easily triggered
(P8) or repeatable (P7), like fire alarms and dog barks. This concern
is also reflected in prior work [20].

We then presented participants with two prototypes. The pro-
totypes were about displaying the model’s uncertainty informa-
tion and supporting corrections of AI errors, both inspired by the
Human-AI interaction guidelines proposed by Amershi et al. [2]
and Google PAIR [47].

Showing uncertainty (A). The Human-AI interaction design
guidelines suggest AI systems to “degrade AI system’s services”
when facing uncertainty [2]. The current SoundWatch system only
reported one prediction that surpasses the confidence threshold
(50%) for each sound event. In comparison, the prototype (Figure
3) acknowledged the potential errors the model makes by adding
“Maybe” to the most confident predictions and other possible pre-
dictions. Most of the participants (N=7) appreciated this design,
saying that it “shows more options” (P9), “sparks curiosity” (P9), and
“admits the system’s own limitations” (P10). However, two partici-
pants questioned its real-life effectiveness. For example, P5 thinks
this design may report “three wrong predictions instead of one.” P4
echoes the statement, stating that:

“At the end of the day, there still can be wrong predic-
tions, and I am not able to do anything about it. . . so is
it really useful?”

Moreover, P9 thinks that showing the design “takes up too much
reading,” indicating that balancing information display on mobile
devices is essential to avoid information overload.
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Error reporting and corrections (B). In the second prototype,
we add a button that allows DHH users to report and correct inac-
curate predictions. After users press the button, the interface will
list two “runner-up” prediction results. Users can select either, but
if neither result is correct, they can press “other” and enter the
correct sound identity using the watch’s input methods (e.g., voice
input or keyboard). Three participants mentioned this potential
feature before we presented them with the storyboard, which is not
surprising considering the frequent errors in our sound recognition
model. Nine participants approved the design, and three preferred
it over the previous one (showing uncertainty information). For ex-
ample, P3 appreciated the added interactivity with sound feedback
and collaboration with the AI, stating:

“It makes the deaf person feel like they are being heard
and seen. By having them input what is important and
teaming up with the device . . . that whole scenario is
very empowering.”

Inspired by the design, P6 proposed a collaborative approach
that involves other people to help assess and correct the sound
recognition results:

“I wish that if I don’t know what the sound is, I can just
record it and send it to somebody else and have them
figure it out. . . If we have a group with everybody doing
this, it would be a lot more intelligent than having each
person doing their own.”

Participants’ willingness to report and correct errors indicates
a strong potential for implementing reinforcement learning [23]
into sound recognition systems by allowing users to report and
correct misattributions. Moreover, as P6 suggested, this process
can happen both collaboratively. For example, P9 described an
incident where SoundWatch gave “duck/goose” feedback while
driving and asked their partner to validate it. However, participants
raised some concerns about this approach. A common concern was
the effectiveness of the feedback (P5, P9, P10). Specifically, theywere
concerned about the excessive amount of feedback the system needs
to reach a satisfactory level of sound recognition performance. This
suggests the importance of implementing effective and efficient
interaction paradigms for reinforcement learning. For example, P9
said:

“If I had to do more than two or three [corrections] an
hour, I think that by day two, I will just give up using
this feature.”

Another concern lies in scenarios where it may be challenging
(e.g., lifting heavy objects) or inappropriate (e.g., meetings) to in-
teract with the mobile device and give feedback (P6). This concern
reaffirms the need to allow DHH users to review past sound events
through features like event logging.

Interestingly, P7 and P9 proposed a combined approach, where
the sound feedback will show uncertainty information and allow
DHH users to report and correct errors. Both participants recog-
nized the risk of information overload with this approach, but
P9 sketched an alternative smartwatch user interface where the
runner-up predictions were visualized as buttons around the main
prediction, and DHH users could provide feedback by pressing
the one that represents the correct sound identity (“Laugh” and

Figure 5: P9’s sketch for a sound notification. The largest
button (“Duck”) at the center represents the main prediction
and is surrounded by smaller buttons that represent other
possible sounds (“Laugh” and “Crying”). The “S” button is
for snoozing, and pressing the “O” (Other) button prompts
users to input the correct sound identity if it is not listed.

“Crying”) or “Others” (O), thereby enabling faster interaction by
effectively decreasing the user interaction steps for the second
approach. (See Figure 5).

6 DISCUSSION
Though prior evaluations of mobile sound recognition systems
[22] provided insights into their short-term technical feasibility, we
conducted a three-week field study of the SoundWatch system [22]
to evaluate its long-term use and integration with DHH people’s
everyday lives. Some of our results contextualize prior findings—
such as on social implications and user interface preferences [10,
22]. We also report on new findings that can only emerge from
an “ecologically-valid” longitudinal field study, such as the real-
world utility of mobile sound recognition systems, usage patterns
over time, the effect of privacy across different stakeholders, and
implications of sound recognition in different contexts. We also
delve into the design opportunities of mobile sound recognition
systems and examine the technical and ethical issues that may arise
during the deployment of this technology. Below, we discuss further
implications of our findings and outline the limitations of our study.

6.1 Utility of Mobile Sound Recognition System
We used SoundWatch to represent mobile sound recognition sys-
tems inspired by DHH people’s preference for using smartwatches
for sound feedback [9], and evaluated its feasibility and utility in
real-life through a three-week field study. Overall, the app’s per-
ceived utility was mixed. On one hand, the system demonstrated
its capability to enhance DHH users’ situational and environmen-
tal awareness, and—with increasing familiarity with the system—
DHH users could potentially deduce sound events from contextual
information (e.g., interpreting footsteps prediction as children’s
movements around the house). Similar to the prior work about an
in-home sound recognition application [21], SoundWatch helped
DHH users perform everyday tasks, such as noticing door knocks
or the water flowing down the kitchen sink. The current system ex-
tends this utility to mobile settings (e.g., detecting incoming traffic).
However, these benefits are limited to situations when the sound
classification is accurate or, at the very least, predictable. This is
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evidenced by insights from both usage patterns (e.g., the decline of
system usage over time) and participants’ testaments that they will
strongly consider using SoundWatch daily only if the reliability
issues of the sound recognition pipelines are addressed.

6.2 Challenges and Opportunities in Mobile
Sound Recognition Systems

For the field study, we leveraged Google’s open-source pre-trained
model, a state-of-the-art approach, to classify sounds. While the
controlled technical evaluation of the SoundWatch system demon-
strates high accuracy, the system’s inadequate real-world perfor-
mance indicates the need for continued efforts on improving sound
recognition in diverse contexts. Based on participants’ feedback,
we point out four technical challenges in developing reliable mobile
sound recognition systems:

1. Background noise. Background noises like traffic, wind, or
speech can influence the system’s ability to recognize target
sounds accurately.

2. Variations in sound sources. Diversity in sound sources,
like doors made with different materials and beeps of mi-
crowaves from different brands, can lead to variations in
sound characteristics like frequency, making it more difficult
for the system to recognize accurately.

3. Similar sounds. The system may have difficulty differenti-
ating among similar sounds without other information, such
as visual inputs and contextual awareness. For example, if
the system cannot recognize the medical setting, the beeping
from medical devices may be identified as microwaves.

4. Unexpected or rare sounds. Real-life situations will in-
volve sounds not included in the training and development
of sound recognition pipelines, causing false negatives.

Informed by the above-listed challenges and participants’ feed-
back and design suggestions, we identify four design opportunities
for a reliable and robust mobile recognition system:

1. End-user customization. Participants’ suggestions on
customization-related features, such as distinct vibrational
patterns for different sounds and adjusting UI fonts, reiter-
ated the user needs reflected in the prior evaluation of the
SoundWatch system [22]. Future work should expand the
system’s customizability by allowing granular controls on
the system’s sound sensing, user interface, and haptics. In
terms of sound sensing, DHH users should be able to adjust
the microphone sensitivity based on individual sounds and
select different sound-sensing pipelines based on their needs.
In terms of UI and haptics, the system should allow users to
personalize the visual display of sound information (e.g., re-
placing loudness with sound direction), adjust the intensity
or duration of the vibrations, and assign vibrational patterns
to certain sounds for quicker reactions (as explored by Good-
man et al. [10]). Moreover, future designs should encourage
creative customizations (e.g., color rings for different sounds)
since they can enable self-expression and motivate the active
adoption of the technology [34].

2. Context awareness. Participants’ frustration regarding the
accuracy of sound recognition included the sound feedback
that did not match the context (e.g., the medical device beeps

recognized as microwave). Even though SoundWatch al-
lowed users to enable or disable sounds manually, this mis-
match indicates a need for embedding context-aware capa-
bilities in mobile sound recognition systems to automate
or minimize the end-user effort to adapt the system to the
environment. Indeed, as suggested by Wobbrock et al.’s in-
fluential ability-based design principles [41] future designs
of mobile sound recognition systems should be responsive
to users’ environments.

3. Graceful handling of AI errors and limitations. Moti-
vated by the frequent sound feedback errors participants
reported and inspired by prior design guidelines of AI sys-
tems [2, 47], we proposed three future-iteration designs of
SoundWatch and asked participants for their opinions. The
result suggested that future work should design and foster
efficient interactions between DHH users and sound recog-
nition pipelines by acknowledging system limitations and
involving user input to report and correct AI errors while
minimizing interruptions of current tasks. Moreover, inviting
inputs from DHH people can also elicit a sense of empower-
ment and agency. However, supporting DHH users’ interac-
tions with AI is challenging because, as Goodman et al. [11]
suggest, DHH people may not be able to effectively record or
assess sounds and, as non-experts, may lack the knowledge
of how AI will behave with their not-so-ideal sound samples
[24, 39]. While prior work proposed several scaffolding tech-
niques like visualizations (e.g.,waveforms and spectrograms)
to address this challenge [11], future research should explore
their feasibility on wearable interfaces.

4. Encouraging collective information access. Mobile
sound recognition systems like SoundWatch foster a linear
relationship where the system acts as a “messenger” between
DHH people and the environment to enhance independence
through sound information access. While prior work recog-
nized the contributions of assistive technologies in support-
ing independent living [3, 4], some disability studies scholars
were skeptical about the concept of “independence” and “self-
reliance” because they underscored the importance of com-
munity support and collective efforts to information access
(e.g., “interdependence” and “access intimacy”) [4, 44, 45].
Furthermore, recent HCI work demonstrated that interdepen-
dence could be a valuable framework that guides the design
of assistive technologies [4, 40]. This value was reflected by
both P6’s suggestions of leveraging collaborative labeling
of sound information among trusted ones and P9’s case of
validating sound feedback with the partner.

6.3 Privacy and Social Implications
While participants and people around them generally accepted the
system’s sound-sensing behaviors, some notable tensions emerged.
First, SoundWatch introduced social tensions, reinforcing prior find-
ings [6, 33, 35]. For example, P7 took off the smartwatch and put it
in the drawer when his friend came over. Second, the acceptance
of SoundWatch could have been partially driven by participants’
risk-benefit assessments. For example, P2 thought about the app’s
potential privacy intrusions but later decided to not be discouraged
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from using it. This contrast between privacy concerns and the per-
ceived benefits of adaptive assistive technology is also reflected in
prior work [16]. Finally, DHH users’ inherent skepticism towards
SoundWatch’s handling of sound information suggests that future
work should consider designs that facilitate the disclosure of sys-
tem use and offer an easy-to-access interface to manage privacy
settings. Future designs can also apply sensing pipelines that mini-
mize the possibility of tracing back the original sound information
collected from the users. For example, Iravantchi et al. [19] explored
using inaudible frequencies above 20KHz to recognize sounds from
everyday objects, showing promising results. Employing privacy-
oriented pipelines like this may help lower DHH users’ concerns
about using mobile sound recognition systems in daily life.

6.4 Study Limitations
Our study has several limitations. First, our insights are drawn from
participants’ self-reported perspectives, and we do not have quan-
titative data on how well the sound classification worked. While
the participants’ detailed qualitative accounts demonstrated the
perceived utility of the system, future work should also quantify
field performance and corroborate our qualitative results. Second,
our system only conveyed the sound identity (and other simple
characteristics such as loudness). Future work should also explore
designs for other complex sound properties, such as conveying
source location, along with sound recognition to see if they help
better discern sounds. Finally, we considered DHH participants
(who may identify as deaf, Deaf, or hard of hearing) as a homoge-
nous group while reporting our findings since past work [5] shows
that these groups, despite their cultural differences, have synergetic
access needs and preferences. Recruiting cross-culturally allowed
us to explore mobile sound recognition with diverse users. Nonethe-
less, future work should examine how preferences may vary with
DHH culture and hearing levels.

7 CONCLUSION
In this paper, we conducted a field evaluation of SoundWatch, a
smartwatch-based sound recognition system, to understand the
real-life feasibility of mobile sound recognition technology and
identify future design opportunities. Our findings demonstrate the
system’s value in generating awareness for DHH users but also
surface the challenges of designing and developing robust, reliable,
and privacy-preserving sound recognition pipelines for mobile
devices. We present design opportunities to address this challenge.
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